Recent Science Results from the CCLDAS Dust Accelerator #### Tobin Munsat and the CCLDAS Team University of Colorado NASA Lunar Science Forum July 18, 2012 #### The CCLDAS Accelerator Team Principals Mihaly Horányi **Physicists** Sascha Kempf **Tobin Munsat** Scott Robertson Zoltan Sternovsky **Andrew Collette** **Keith Drake** **Anna Mocker** Grad Students AJ Gemer Leela O'Brien Anthony Shu **Evan Thomas** Jianfeng Xie Undergrads Chris Anaya Nick Beaty Spenser Burrows Max Kempf Paige Northway **Chris Warren** #### We have a dust accelerator... dustcam.colorado.edu ### **Technical Description** - Pelletron 3 MV Electrostatic Generator - Particle velocities: ≤ 100 km/s - Active selection of particles (charge/velocity) - Particle materials: Fe, Al, Ag, Latex, ??? - Particle sizes: 0.2 2.5 μm # Hypervelocity Particle Parameters Highest velocity so far: 52 km/s #### **Active Particle Downselection** #### Performance Enhancements -> Next Chapter of Experiments - Assessment of impact products - -Secondary Ejecta - Neutral gas - Plasma **Energy partition** - Light-flash experiments - -PMT sets to resolve timing / angular distribution / spectral content - Mini Bayard-Alpert gauges for neutrals - Cratering studies (post-mortem) - Instrument development and testing #### Temperature Measurements of Impact Plasma - Measure T_{blackbody}, P_{rad} of impact-generated gas/plasma (vs. time) - Measure T variation with impact velocity - Impact-generated light flash from 1-40 km/sec dust impacting metal target - Flash diagnosed with PM tubes & interference filters, under the assumption of blackbody radiation ## PMT Output (3 filters) Temperatures in range of 2500K-5000K, increasing with velocity, time resolved over \sim 20 μs flash lifetime Many subtleties to interpretation of PMT signals, which are rich with information Full spectral measurement in the works... Hear talk by Andrew Collette, Wed. 11:00 #### Secondary Ejecta Experiments - Filtered photomultiplier tubes - Angular resolution - Control over impactors and targets Primary and secondary flashes ### Secondary Ejecta Experiments #### Linear Time-of-Flight Mass Spectrometer - Measures velocity distribution of the ions - Narrow instrument aperture filtering the angular distribution - Few secondary ions due to ejecta # Linear Time-of-Flight Mass Spectrometer #### Time-of-Flight Mass Spectrum Impact of Fe particle (80nm radius) onto LDEX witness plate @ 34.2 km s⁻¹ #### Impact Effects on Retroreflector Faces #### D. Currie (UMD) #### **Initial results:** Impacts detectable, but not show-stoppers for reflector application (will follow up with higher velocity tests) #### SEM Chemical Assessment of Impact Site ID- Spectrum processing: No peaks omitted Processing option: All elements analyzed (Normalised) Number of iterations = 3 Standard: C CaCO3 1-Jun-1999 12:00 AM O SiO2 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM | Element | Weight% | Atomic% | |---------|---------|---------| | ск | 7.15 | 15.29 | | OK | 2.42 | 3.89 | | Al K | 79.67 | 75.86 | | Fe K | 10.76 | 4.95 | | | | | #### **Cratering Studies** # PVDF used as dust detector - Permanent polarization of thin dielectric - Impact crater removes material, leading to change in surface charge - CSA measures signal - Calibration critical! #### **Dust Characteristics** - **→** Crater Characteristics - → Detector Signals # **Cratering Studies** #### Stereoscopic Profile Reconstruction ## Stereoscopic Profile Reconstruction See poster by Anthony Shu #### **STEREO Antenna Tests** ## Lunar Dust EXperiment #### Calibration of LDEX Engineering/Flight Models See Poster by Zoltan Sternovsky #### We Are Open To Collaborations! This is a unique facility, right here in the U.S. Please take advantage of it!